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VI1.1. Introduction

Note: 1) Chapter six used state feedback approach

2) Polynomial equations approach is an alternative approach to the design via pole
placement with a minimum order state observer. 3) This approach can be applied to
MIMO system.



VI11.2. Diophantine Equation

Consider the system:

Y(z) _B(2)
x(2) " AR) -
Where

Az)=2"+az""+-a,z+a,, B(z)=b,z"+bz" " +---b_,z+b,

Assume the system is completely controllable and observable.

There is no pole-zero cancellation in the pulse transfer function.

When A(z) and B(z) have no cancellation, these polynomials are called coprime

polynomials.

A polynomial in z is called monic if the coefficient of the highest-degree term is unity.
Thus A(z) is monic.

Next define a (2n —1)th degree polynomial D(z) as follows:
D(z)=d,z*"* +d,z*"? +---d,, ,z+d,, ,

Then there exist unique (n—1)th degree polynomials «(z) and (z)such that

a(z)A(z)+ B(z)B(z)= D(z) 7.2
Where
a(2)= aozn_l +alzn_2 T QI+, ﬂ(z): /Bozn_l +ﬂlzn_2 +o B+ By

Eq. 7.2 is called Diophantine equation

Now let us define Sylvester matrix E, which is defined in terms of the coefficients of
coprime polynomials A(z) and B(z).

a, 0 0 b 0

an_l an cee 0 bn 5 bn cee 0
Y 0 S 0
a b

E=| 1 a . by b L 7.3
1 ., 0 b b,

0 © a 0 0 b,

0 0 1 0 O by |




Note: 1) to use 7.3, A(z) has to be monic.
2) Sylvester matrix E is nonsingular if and only if A(z) and B(z) are coprime.

Now define the vectors D and M such that:

Uy
_d2n—l_ arl_z
d2n—2 a
. 0
D=| : M = 5
dl ﬂn—l
L do | .
L Ao |

Then the coefficients «,,,---a, , and f,, f,--- S, , can be determined from
M=E"'D

Example 7.1 consider following A(z) a monic polynomial of degree 3, B(z) (a
polynomial of degree 2) and D(z) a polynomial of degree 5:
A(z)=12>+22°+32+4

B(z)=22°+z+5

D(z)=5z° + 4z*

Find o(z) and S(z)



Regular system design example 7.2.

U() 0.02(z +1) Y@
G(z)=—"2
(Z) (Z _1)2 >
G, (2)= _24(2 ~0.6667)
° (z+0.32) ¢
Figure 7.1
0.02(z +1)

System transfer function is G(z) = system is completely controllable and

(z-2f

observable. The controller is designed to place the desired closed loop pole at

2,=06+j0.4,2,=0.6- j0.4
(z-0.6667)

The controller is designed using pole placement technique as G, (z)= —24m
+0.

Next we will present the polynomial approach to have the same controller designed.

Consider the block diagram in figure 7.2 The feedback pulse transfer function @

a(2)

R(2) U@ | Y(z) _B(z) _002(z+1) Y(2)

2®, U AL (-1 >

(z

a(2) '

—

Figure 7.2

serves as a regulator. And the plant transfer function is Y(Z) = B(Z) = 0'02(2 +1)

Uz) Al (z-1)







VI11.3. Polynomial Equations
Approach to Control System
Design

R(2) U(@2) B(z) Y@

N~—

gg )

N—

Figure 7.3. Block diagram of regulator system
The above controller is designed based on the Diophantine equation:

a(2)Az)+ p(2)B(z)= F(2)H(2)= D(z)

Where A(z) is monic polynomial of degree n, B(z) is a polynomial of degree m (m<n)
H(z) is the desired characteristic polynomial for the pole placement part and F(z) is the
characteristic polynomial for the minimum order observer. (both H(z) and F(z) are
stable polynomials) the degree of H(z)polynomial is n and n-1 for F(z).

Control system configuration 1

In figure 7.4, the output will follow the reference input. KO is set that the steady state
output y(k) is equal to unity when the input r(k) is a unit step sequence.

The closed loop transfer function is

B(z)
Y@)_ . AL o2B) . al2B)
R(2) K°1+igz)ﬂ<z; @A) AR HEFQ)

To determine K, , we set



limy(k)= Izim(l— 7tYy(z) = Izim(l— 7K, Z(Z)F(Z)l— =

HFQ)
_k _HOFQ

" a(l)B@)

R(2) . ’C}__ U(2) % Y(2)

Alz)
a(2) B
Figure 7.4
Control system configuration 2.
R(2) . : (2 U(2) igi; Y(2)
of2) |
g0 +’ét Fo) [
Figure 7.5
U(z)= {‘;‘Ti))u(z)_u (z)+%Y(z)} L KR(2)
7.4
%u (2)- _%Y(m <,R()
The pulse transfer function is STZZ)) = % =U(z)= %Y(z) 7.5

By substituting eg. 7.5 into eq. 7.4, we obtain:
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F(z) F(z)B(z) F(z)
_ (2@ AR), BD)\ )k R
Fols) E M=K 8
_Y(@)_ KF(@2)B() _ KF(z)B(z) _ K,B(z)
R(z) a(z2)A(z)+p(2)B(z) H(2)F(z) H(z)
Y(z) B(z2) 1

Example 7.3 Consider the system with ) = =—
U(z) A(z) z°-0.84z+0.16
Where A(z)=2z°-0.84z+0.16, and B(z

=1
Use the block diagram configuration shown below

R(2) + U@ Y(2)
—> «w —») . B(z)
A

v

|
A

A 4
|

Assume the following H(z)=z%, and F(z)=z>.

Using the polynomial equations approach, design a control system for the plant. Obtain
the unit step response and unit ramp response of the designed control system. Assume the
sampling period T to be 1 sec.



MATLAB code:



VI1l.4. Design of Model Matching
Control System

Suppose the pulse transfer function of the plant is

Y(z) _B(2)

U@z) Al2)

Where A(z) is monic polynomial of degree n, B(z) is a polynomial of degree m (m<n)
It may be possible to choose H(z) such that it includes polynomial B(z), or

H(2)=B(2)H,(2)

Referring to equation 7.6

Y(z) _KB()_ KB(2) _ K,

R@z) H(@) B@H(2) H()

Thus, we eliminated the zeros of the numerator polynomial, which means that we can eliminate
the zeros of the plant if we so desire.

Suppose we want the desired close loop system to be

Y2 o B0
R T Afe)

It is possible to design such a system by use of the polynomial equations approach. Since we
force the pulse transfer function of the control system exactly like the model, we call such
control system a model matching control system.

Let’s choose a stable polynomial of degree n—m as H,(z). (H,(z) must be a stable polynomial)
Such that H(z)=B(z)H,(z)
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Y(z) B(z) .

Refer to the Block diagram of model matching control system, assume that m = m is
z z

completely controllable and observable.

We determine «(z),and A(z) by solving following Diophantine equation

a(2)Az)+ A(2)B(z) = F(2)B(2)H,(2)

Where F(z) is a stable polynomial of n-1 degree.

From the model matching control system diagram:

1.7

N

Hence: Y(z) _Y(2)V(2)_ 1 GroaaHi(2)=G
R(z) V(2)R(E) H,i(2)
Remarks: 1) G, ., H,(z) has to be physically realizable, which means the order of the numerator

will be less than the order of the denominator.
2) The numerator polynomial of the B(z) must be stable because of the cancellation.

model
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R(2) + U2 B(z

Y(2)
—> Gmodel Hl(z)

&2
\/

Block diagram of model matching control system
Example 7.4 consider the plant defined by
Y(z) B(z) 0.01873(z +0.9356)
U(z) Az) (z-1)z-0.8187)
Using the polynomial equations approach, design a control system such that the system will
behave like the following model, G
0.32

G =

model T 22 122+ 0.52
Obtain the unit step response and unit ramp response of the control system. The sampling period
is 0.2 sec.

model

1@..15 0.32(z + 0.5) j;@ uz) o|_0.01873 2 + 0.01752 Y@ .

{22 - 1.2 z + 0.52 z2 - 1.8187 z + 0.8187

Cmode1 Hy(2)
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Unit step response:

Unit ramp response:
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