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VII Polynomial Equations 
Approach to Control System 

Design 
 

1. Introduction  
 

2. Diophantine Equation 
 

3. Polynomial Equations Approach to Control System Design 
 

4. Design of Model Matching Control System 
 

 

VII.1. Introduction 
 
 
Note:  1) Chapter six used state feedback approach 
2) Polynomial equations approach is an alternative approach to the design via pole 
placement with a minimum order state observer. 3) This approach can be applied to 
MIMO system.  
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VII.2. Diophantine Equation 
 
 
Consider the system: 
 
 

 
 zA

zB

zX

zY
           7.1 

Where  
  nn

nn azazazzA  


1
1

1  ,   nn
nn bzbzbzbzB  


1
1

10   

Assume the system is completely controllable and observable. 
There is no pole-zero cancellation in the pulse transfer function. 
When  zA  and  zB  have no cancellation, these polynomials are called coprime 
polynomials.  
 
A polynomial in z is called monic if the coefficient of the highest-degree term is unity. 
Thus  zA  is monic.  
 
Next define a  thn 12   degree polynomial  zD  as follows: 

  1222
22

1
12

0 
  nn

nn dzdzdzdzD   

 
Then there exist unique  thn 1  degree polynomials  z  and  z such that  

         zDzBzzAz           7.2 
Where  
  12

2
1

1
0 

  nn
nn zzzz   ,   12

2
1

1
0 

  nn
nn zzzz    

 
Eq. 7.2 is called Diophantine equation 
 
Now let us define Sylvester matrix E, which is defined in terms of the coefficients of 
coprime polynomials  zA  and  zB . 
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     7.3 
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Note: 1) to use 7.3,  zA  has to be monic.  

          2) Sylvester matrix E is nonsingular if and only if  zA  and  zB  are coprime. 
 

Now define the vectors D and M such that: 
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

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

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


















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
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
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




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Then the coefficients 110 , n   and 110 , n   can be determined from  

DEM 1  
 
Example 7.1 consider following  zA  a monic polynomial of degree 3,  zB  (a 

polynomial of degree 2) and  zD  a polynomial of degree 5: 

  432 23  zzzzA  

  52 2  zzzB  

  45 45 zzzD   

Find  z  and  z  
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Regular system design example 7.2. 
 

    
 21

102.0





z

z
zG

   
 32.0

6667.0
24





z

z
zGD

U(z) Y(z)

 
Figure 7.1 

 

System transfer function is    
 21

102.0





z

z
zG , system is completely controllable and 

observable.  The controller is designed to place the desired closed loop pole at  
 

4.06.01 jz  , 4.06.02 jz   

The controller is designed using pole placement technique as    
 32.0

6667.0
24





z

z
zGD  

 
Next we will present the polynomial approach to have the same controller designed. 
 

Consider the block diagram in figure 7.2 The feedback pulse transfer function 
 
 z
z




  

U(z) Y(z)R(z)

--

 
 z
z




  
 

 
 

 
 21

102.0





z

z

zA

zB

zU

zY

 
Figure 7.2 

serves as a regulator. And the plant transfer function is 
 
 

 
 

 
 21

102.0





z

z
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zB

zU
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VII.3. Polynomial Equations 
Approach to Control System 

Design 
 
 

U(z) Y(z)R(z)

--

 
 z
z




 
 zA

zB

 
Figure 7.3. Block diagram of regulator system 

The above controller is designed based on the Diophantine equation: 
             zDzHzFzBzzAz    

 
Where  zA  is monic polynomial of degree n,  zB  is a polynomial of degree m ( nm  ) 

 zH  is the desired characteristic polynomial for the pole placement part and  zF  is the 

characteristic polynomial for the minimum order observer. (both  zH  and  zF  are 

stable polynomials) the degree of  zH polynomial is n and n-1 for  zF . 
 
Control system configuration 1 
 
In figure 7.4, the output will follow the reference input. K0 is set that the steady state 
output  ky  is equal to unity when the input  kr  is a unit step sequence. 
 
The closed loop transfer function is  
 

 
 

 
 
 
 

 
 

   
       

   
   zFzH

zBz
K

zBzzAz

zBz
K

z

z

zA

zB
zA

zB

K
zR

zY 





 000

1






  

To determine 0K , we set  
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           
   

   
   

   
   11

11

1
11

11

1

1
1lim1limlim

0

010
1

1

1

1

B

FH
K

FH

B
K

zzFzH

zBz
Kzzyzky

zzk










 








 

U(z) Y(z)R(z)

--

 
 z
z




 
 zA

zB
K0

Figure 7.4 
 
Control system configuration 2. 
 

U(z) Y(z)R(z)

--

 
 zA

zB
K0

--

+

+ +
  
 zF

z 
 zF

z

Figure 7.5  
 

   
       

     

 
     

     zRKzY
zF

z
zU

zF

z

zRKzY
zF

z
zUzU

zF

z
zU

0

0

















     7.4 

The pulse transfer function is 
 
 

 
     

   zY
zB

zA
zU

zA

zB

zU

zY
    7.5 

 
By substituting eq. 7.5 into eq. 7.4, we obtain: 
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 
     

 
 
     

     

 
 

 
 

 
     

 
 

   
       

   
   

 
 zH

zBK

zFzH

zBzFK

zBzzAz

zBzFK

zR

zY

zRKzY
zF

z

zB

zA

zF

z

zRKzY
zF

z
zY

zB

zA

zF

z
zU

zF

z

000

0

0
























    7.6 

 

Example 7.3 Consider the system with 
 
 

 
  16.084.0

1
3 


zzzA

zB

zU

zY
 

Where   16.084.03  zzzA , and   1zB  
Use the block diagram configuration shown below 
 

U(z) Y(z)R(z)

--

 
 zA

zB
K0

--

+

+ +
  
 zF

z  
 zF

z

 
Assume the following   3zzH  , and   2zzF  . 
Using the polynomial equations approach, design a control system for the plant. Obtain 
the unit step response and unit ramp response of the designed control system. Assume the 
sampling period T to be 1 sec.  
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MATLAB code: 
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VII.4. Design of Model Matching 
Control System  

 
 
 
Suppose the pulse transfer function of the plant is  
 
 
 

 
 zA

zB

zU

zY
  

 
Where  zA  is monic polynomial of degree n,  zB  is a polynomial of degree m ( nm  ) 

It may be possible to choose  zH  such that it includes polynomial  zB , or  

     zHzBzH 1  
 
 
Referring to equation 7.6 
 
 
 

 
 

 
     zH

K

zHzB

zBK

zH

zBK

zR

zY

1

0

1

00   

 
 
Thus, we eliminated the zeros of the numerator polynomial, which means that we can eliminate 
the zeros of the plant if we so desire.  
 
 
Suppose we want the desired close loop system to be  
 
 
 

 
 zA

zB
G

zR

zY

m

m
el  mod , 

 
 
It is possible to design such a system by use of the polynomial equations approach. Since we 
force the pulse transfer function of the control system exactly like the model, we call such 
control system a model matching control system.  
 
 
Let’s choose a stable polynomial of degree mn   as  zH1 . (  zH1  must be a stable polynomial)  

Such that      zHzBzH 1  
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Refer to the Block diagram of model matching control system, assume that 
 
 

 
 zA

zB

zU

zY
  is 

completely controllable and observable.  
 
 
We determine    zand，z   by solving following Diophantine equation 
 
 
             zHzBzFzBzzAz 1   

 
Where  zF  is a stable polynomial of n-1 degree.  
 
 
 
From the model matching control system diagram:  
 
 

   
       

     

 
     

     zVzY
zF

z
zU

zF

z

zVzY
zF

z
zUzU

zF

z
zU

















     7.7 

Since 
 
 

 
     

   zY
zB

zA
zU

zA

zB

zU

zY
 The pulse transfer function is 

 
 

We have 

 
 

 
     

     

 
 

   
       

   
       zHzHzBzF

zBzF

zBzzAz

zBzF

zV

zY

zVzY
zF

z
zY

zB

zA

zF

z

11

1











 

Also      zRzHGzV el 1mod  

 
 

Hence: 
 
 

 
 

 
      elel GzHG

zHzR

zV

zV

zY

zR

zY
mod1mod

1

1
  

Remarks: 1)  zHG el 1mod  has to be physically realizable, which means the order of the numerator 

will be less than the order of the denominator.  
2) The numerator polynomial of the  zB  must be stable because of the cancellation.  
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U(z) Y(z)R(z)

--

 
 zA

zB

--

+

+ +
 
 zF

z 
 zF

z

 zHG el 1mod

 
Block diagram of model matching control system 

Example 7.4 consider the plant defined by  
 
 

 
 

 
  8187.01

9356.001873.0





zz

z

zA

zB

zU

zY
 

Using the polynomial equations approach, design a control system such that the system will 
behave like the following model, elGmod  

52.02.1

32.0
2mod 


zz

G el  

Obtain the unit step response and unit ramp response of the control system. The sampling period 
is 0.2 sec.  
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Unit step response: 
 
 
 
 
 
Unit ramp response: 
 
 
 
 
 
 
 
 


